# Install required packages (run once, then comment out) # install.packages("timelineS") # install.packages("lubridate") # install.packages("ggplot2") # install.packages("dplyr") # install.packages("reshape2") # install.packages("rPref") # install.packages("mco") # install.packages("MASS") # setwd("D:/1st semester/LCA Final project-R") # Load required libraries library(timelineS) library(lubridate) library(ggplot2) library(dplyr) library(reshape2) library(rPref) library(mco) library(MASS) # Clear environment rm(list = ls()) # Define helper functions plot.timeline <- function(lifetime, events.name, start.Date, plot.Name) # Plot timeline { dataP <- data.frame(Events = events.name, Event_Dates = ymd(start.Date) + years(lifetime)) # Create data frame timelineS(dataP, main = plot.Name, labels = events.name, label.direction = "up", label.position = 3) # Plot timeline } dist.Events <- function(lifetime, events, start.Date, option.Name) { events <- sort(events, decreasing = T) # Sort events distribution.events <- sapply(events, seq, from = 0, to = lifetime) # Generate distribution all.events <- melt(distribution.events) # Melt data colnames(all.events) <- c("frequency", "event") # Rename columns all.events <- all.events[order(all.events$frequency),]# Order data unique.events <- all.events[!duplicated(all.events$frequency),]# Remove duplicates unique.events$event[which(unique.events$frequency == 0)] <- "DC" # Set start event #plot timeliine # plot.timeline(unique.events$frequency, unique.events$event, start.Date, option.Name) return(unique.events) } combine.lifeTimelines <- function(product.1, product.2, p1.dur, p2.dur) # Combine two timelines { base <- list(Names = c(), frequency = c(), duration = c()) base$frequency <- sort(unique(c(product.1$frequency, product.2$frequency)), decreasing = FALSE) base$Names[1] <- "DC" base$duration[1] <- 0 base$Names[length(base$frequency)] <- "END" base$duration[length(base$frequency)] <- 0 for(index in 2:(length(base$frequency) - 1)) # Combine timelines { phase.1 <- product.1$event[which(product.1$frequency == base$frequency[index])] # Get phase 1 phase.2 <- product.2$event[which(product.2$frequency == base$frequency[index])] # Get phase 2 if(length(phase.1) != 0 && length(phase.2) != 0) # Combine phases { base$Names[index] <- paste(phase.1, phase.2) base$duration[index] <- max(p1.dur[which(names(p1.dur) == phase.1)], p2.dur[which(names(p2.dur) == phase.2)]) } else if(length(phase.1) != 0 && length(phase.2) == 0) { base$Names[index] <- phase.1 base$duration[index] <- p1.dur[which(names(p1.dur) == phase.1)] } else if (length(phase.1) == 0 && length(phase.2) != 0) { base$Names[index] <- phase.2 base$duration[index] <- p2.dur[which(names(p2.dur) == phase.2)] } else { base$duration[index] <- 0 } } return(base) } # Define parameters par(mfrow = c(2,1))############################################## start.Date = "2025-02-01" lifetime <- 130 events.Op1.MSBuilding = c(S = 20, M = 12, R = 40, END = lifetime) duration.ev.MSBuilding <- c(S = 45, M = 10, R = 100) events.Op1.OSBuilding <- c(M.o = 15, PR = 30, CR = 50, END = lifetime) duration.ev.OSBuilding <- c(M.o = 10, PR = 45, CR = 100) design.Options.MSBuilding <- list(desing.Op1.MSBuilding <- "2. Cast in place concrete Beam and Slab") design.Options.OSBuilding <- list(desing.Op1.OSBuilding <- "3. One-Way RC Slab") # Generate maintenance schedules maintenance.MSBuilding <- dist.Events(lifetime, events.Op1.MSBuilding, start.Date, design.Options.MSBuilding) maintenance.OSBuilding <- dist.Events(lifetime, events.Op1.OSBuilding, start.Date, design.Options.OSBuilding) #print(maintenance.MSBuilding) # Combine timelines integrated.interv <- combine.lifeTimelines(maintenance.MSBuilding, maintenance.OSBuilding, duration.ev.MSBuilding, duration.ev.OSBuilding) # Calculate total interruption duration sum(integrated.interv$duration) # ###################### Strategy1 change frequency as (12, *, 45) ######################################## # events.Op1.MSBuilding = c(S = 20, M = 12, R = 45, END = lifetime) # duration.ev.MSBuilding <- c(S = 45, M = 10, R = 100) # events.Op1.OSBuilding <- c(M.o = 12, PR = 30, CR = 45, END = lifetime) # duration.ev.OSBuilding <- c(M.o = 10, PR = 45, CR = 100) # design.Options.MSBuilding <- list(desing.Op1.MSBuilding <- "2. Cast in place concrete Beam and Slab") # design.Options.OSBuilding <- list(desing.Op1.OSBuilding <- "3. One-Way RC Slab") # # # Generate maintenance schedules # maintenance.MSBuilding <- dist.Events(lifetime, events.Op1.MSBuilding, start.Date, design.Options.MSBuilding) # maintenance.OSBuilding <- dist.Events(lifetime, events.Op1.OSBuilding, start.Date, design.Options.OSBuilding) # #print(maintenance.MSBuilding) # # # Combine timelines # integrated.interv <- combine.lifeTimelines(maintenance.MSBuilding, maintenance.OSBuilding, duration.ev.MSBuilding, duration.ev.OSBuilding) # # # Calculate total interruption duration # sum(integrated.interv$duration) # ###################### Strategy2 change frequency as (12, 25, *) ######################################## # events.Op1.MSBuilding = c(S = 25, M = 12, R = 40, END = lifetime) # duration.ev.MSBuilding <- c(S = 45, M = 10, R = 100) # events.Op1.OSBuilding <- c(M.o = 12, PR = 25, CR = 50, END = lifetime) # duration.ev.OSBuilding <- c(M.o = 10, PR = 45, CR = 100) # design.Options.MSBuilding <- list(desing.Op1.MSBuilding <- "2. Cast in place concrete Beam and Slab") # design.Options.OSBuilding <- list(desing.Op1.OSBuilding <- "3. One-Way RC Slab") # # # Generate maintenance schedules # maintenance.MSBuilding <- dist.Events(lifetime, events.Op1.MSBuilding, start.Date, design.Options.MSBuilding) # maintenance.OSBuilding <- dist.Events(lifetime, events.Op1.OSBuilding, start.Date, design.Options.OSBuilding) # #print(maintenance.MSBuilding) # # # Combine timelines # integrated.interv <- combine.lifeTimelines(maintenance.MSBuilding, maintenance.OSBuilding, duration.ev.MSBuilding, duration.ev.OSBuilding) # # # Calculate total interruption duration # sum(integrated.interv$duration) # # ###################### Strategy3 change frequency as (12, *, 40) ######################################## events.Op1.MSBuilding = c(S = 20, M = 12, R = 40, END = lifetime) duration.ev.MSBuilding <- c(S = 45, M = 10, R = 100) events.Op1.OSBuilding <- c(M.o = 12, PR = 30, CR = 40, END = lifetime) duration.ev.OSBuilding <- c(M.o = 10, PR = 45, CR = 100) design.Options.MSBuilding <- list(desing.Op1.MSBuilding <- "2. Cast in place concrete Beam and Slab") design.Options.OSBuilding <- list(desing.Op1.OSBuilding <- "3. One-Way RC Slab") # Generate maintenance schedules maintenance.MSBuilding <- dist.Events(lifetime, events.Op1.MSBuilding, start.Date, design.Options.MSBuilding) maintenance.OSBuilding <- dist.Events(lifetime, events.Op1.OSBuilding, start.Date, design.Options.OSBuilding) #print(maintenance.MSBuilding) # Combine timelines integrated.interv <- combine.lifeTimelines(maintenance.MSBuilding, maintenance.OSBuilding, duration.ev.MSBuilding, duration.ev.OSBuilding) # Calculate total interruption duration sum(integrated.interv$duration) # # # # # # Define design exploration function design.explore <- function(events1, events2) { results <- c() for(i in 1:dim(events1)[1]) { ev1 <- unlist(events1[i, ]) dist.1 <- dist.Events(lifetime, ev1, start.Date, design.Options.MSBuilding) dur.ev1 <- ev1/2 for (j in 1:dim(events1)[1]) { ev2 <- unlist(events2[j, ]) dist.2 <- dist.Events(lifetime, ev2, start.Date, design.Options.OSBuilding) dur.ev2 <- ev2/2 combined.lifetime <- combine.lifeTimelines(dist.1, dist.2, dur.ev1, dur.ev2) min.dist.int <- min(abs(combined.lifetime$frequency[1:(length(combined.lifetime$frequency) - 1)] - combined.lifetime$frequency[2:length(combined.lifetime$frequency)])) results <- rbind(results, c(ev1, ev2, dur = sum(combined.lifetime$duration), dist.inter = min.dist.int)) } } return(as.data.frame(results)) } # set.seed(200) # You can change 200 to any fixed number # Generate design space n.grid <- 5 # Number of grid points # ##strategy 0 # events.grid.MSBuilding <- expand.grid(S = sample(seq(15,25, by = 1), n.grid), # M = sample(seq(5,19,1), n.grid), # R = sample(seq(20, 60, 1), n.grid)) # Design space for MSBuilding # events.grid.OSBuilding <- expand.grid(M.o = sample(seq(5, 25, by = 1), n.grid), # PR = sample(seq(10, 50, 1), n.grid), # CR = sample(seq(40, 60, 1), n.grid)) # Design space for OSBuilding # ##strategy 1 # events.grid.MSBuilding <- expand.grid(S = sample(seq(15,25, by = 1), n.grid), # M = sample(seq(5,19,1), n.grid), # R = sample(seq(25, 65, 1), n.grid)) # Design space for MSBuilding # events.grid.OSBuilding <- expand.grid(M.o = sample(seq(7, 17, by = 1), n.grid), # PR = sample(seq(10, 50, 1), n.grid), # CR = sample(seq(35, 55, 1), n.grid)) # Design space for OSBuilding # #strategy 2 # events.grid.MSBuilding <- expand.grid(S = sample(seq(15,35, by = 1), n.grid), # M = sample(seq(5,19,1), n.grid), # R = sample(seq(30, 50, 1), n.grid)) # Design space for MSBuilding # events.grid.OSBuilding <- expand.grid(M.o = sample(seq(7, 17, by = 1), n.grid), # PR = sample(seq(20, 30, 1), n.grid), # CR = sample(seq(45, 55, 1), n.grid)) # Design space for OSBuilding #strategy 3 events.grid.MSBuilding <- expand.grid(S = sample(seq(10,30, by = 1), n.grid), M = sample(seq(5,19,1), n.grid), R = sample(seq(30, 50, 1), n.grid)) # Design space for MSBuilding events.grid.OSBuilding <- expand.grid(M.o = sample(seq(7, 17, by = 1), n.grid), PR = sample(seq(25, 35, 1), n.grid), CR = sample(seq(35, 45, 1), n.grid)) # Design space for OSBuilding # Explore design space response.space <- design.explore(events.grid.MSBuilding, events.grid.OSBuilding) #design.explore is a function # Define preferences and select best options p <- low(dur) * high(dist.inter) # Define preferences sky <- psel(response.space, p) # Select best options pareto2 <- psel(response.space, p, top = nrow(response.space)) # Select Pareto-optimal solutions # Visualize results ggplot(response.space, aes(x = dur, y = dist.inter)) + geom_point(shape = 21) + geom_point(data = pareto2, size = 3, aes(color = factor(pareto2$.level))) # Define function to show Pareto front show_front <- function(pref) { plot(response.space$dur, response.space$dist.inter) sky <- psel(response.space, pref) plot_front(response.space, pref, col = rgb(0, 0, 1)) points(sky$dur, sky$dist.inter, lwd = 3) } # Show Pareto front show_front(p) p1 <- high(dur) * low(dist.inter) show_front(p1) # Life Cycle Inventory and Analysis (change the directory to yours) LCI.materials <- read.csv("C:/Users/panji/Desktop/LCImaterials-2.csv") ############################define MSBuilding function#################### LCA.MSBuilding <- function(length, width, thickness, MSbeam.Option, MSslab.Option, materials, dist.event) { SemiPrecast.prefab.MSbeam.Section <- 0.135 SemiPrecast.cast_in_place.MSbeam.Section <- 0.045 SemiPrecast.MSbeam.Section <- SemiPrecast.prefab.MSbeam.Section + SemiPrecast.cast_in_place.MSbeam.Section cast_in_place.MSbeam.Section <- 0.18 materials.split <- split(materials, materials$scope) s <- summary(as.factor(dist.event$event)) s2 <- as.data.frame(rbind(Freq = s), stringsAsFactors=F, row.names = 1:length(s)) # print(s2) # print(names(s2)) # calculate the volume of the MSslab based on different materials strategies if(MSslab.Option == "RC") { if(MSbeam.Option =="none"){ MSslab.volume <- length * width * thickness interventions.MSslab <- s2$DC + 0.3*s2$S + 0.7 * (if (!is.null(s2$R)) {s2$R} else {0}) + 0.15 * s2$M #describe the reason for the weight of the maintenance } else if(MSbeam.Option =="RC"){ MSslab.volume <- (length * width - 2 * (length + width) * 0.3) * thickness interventions.MSslab <- s2$DC + 0.3*s2$S + 0.7 * (if (!is.null(s2$R)) {s2$R} else {0}) + 0.15 * s2$M } } else if (MSslab.Option == "PRC+RC") { MSslab.volume <- 0.14 * (length * width - 2 * (length + width) * 0.3) interventions.MSslab <- s2$DC + 0.3*s2$S + 0.7 * (if (!is.null(s2$R)) {s2$R} else {0}) + 0.15 * s2$M } #MSbeam options if (MSbeam.Option == "PRC+RC") { #get the numbers of beams n1 <- round(length / 4, 0) n2 <- round(width / 4, 0) interventions.beams <- s2$DC + 0.3*s2$S + 0.7 * (if (!is.null(s2$R)) {s2$R} else {0}) + 0.15 * s2$M #get the volume of the concrete for the prefab beams beams.V <- (n1 * SemiPrecast.MSbeam.Section * width + n2 * SemiPrecast.MSbeam.Section * length ) } else if (MSbeam.Option == "RC") { n1 <- round(length / 4, 0) n2 <- round(width / 4, 0) beams.V <- (n1 * cast_in_place.MSbeam.Section * width + n2 * cast_in_place.MSbeam.Section * length ) interventions.beams <- s2$DC + 0.3*s2$S + 0.7 * (if (!is.null(s2$R)) {s2$R} else {0}) + 0.15 * s2$M } else if (MSbeam.Option == "none") { n <- 0 beams.V <- 0 interventions.beams <- 0 } # print(length(interventions.MSslab)) # print(nrow(materials.split[[MSslab.Option]])) MSslab <- mutate(materials.split[[MSslab.Option]], building.Q = MSslab.volume, interventions = interventions.MSslab) if (!is.null(materials.split[[MSbeam.Option]])) { MSbeam <- mutate(materials.split[[MSbeam.Option]], building.Q = beams.V, interventions = interventions.beams) LCA.matrix <- rbind(MSslab, MSbeam) } else { LCA.matrix <- rbind(MSslab) } LCA.matrix <- mutate(LCA.matrix, TotalMaterials.Q = quantities * building.Q / 1000, materials.LC = TotalMaterials.Q * interventions, Energy.LC = materials.LC * energy, CO2.LC = materials.LC * CO2 * 1000, NOx.LC = materials.LC * NOx * 1000, SO2.LC = materials.LC * SO2 * 1000) print(LCA.matrix) LCA.results <- list(Energy = sum(LCA.matrix$Energy.LC), CO2 = sum(LCA.matrix$CO2.LC), NOx = sum(LCA.matrix$NOx.LC), SO2 = sum(LCA.matrix$SO2.LC)) print("interventions.MSslab value:") print(interventions.MSslab) return(LCA.results) } # Define parameters for LCA #initialize the variables we need b.length <- 8 # units: m b.width <- 4 #units m bd.depth <- 0.12 #units m #vectors, which will contain different design options for beam and for slab. beam.Options <- c("RC", "PRC+RC", "none") slab.Options <- c("RC", "PRC+RC") ############################## Define OSBuilding function ############################ LCA.OSBuilding <- function(length, width, height, thickness, Joist.Option, materials, dist.event) { RC.Joist.Section <- 0.0272 # Maximum dimensions: Width 16 cm and height 17 cm steel.Joist.unitWeight <- 2.94 # kg/m (Density * Cross-sectional area) # Split materials by scope materials.split <- split(materials, materials$scope) # Extract event frequencies from dist.event s <- summary(as.factor(dist.event$event)) s2 <- as.data.frame(rbind(Freq = s), stringsAsFactors = FALSE, row.names = 1:length(s)) # Slab volume & interventions OSslab.Option <- "RCO" OSslab.volume <- length * width * thickness interventions.OSslab <- s2$DC + 0.15*s2$M.o + 0.3*if (!is.null(s2$PR)) {s2$PR} else{ 0 } + 0.7* (if(! is.null(s2$CR)) {s2$CR} else {0}) # Joist options if (Joist.Option == "RC Joist") { n <- round(width / 0.75, 0) joists.volume <- n * RC.Joist.Section * length interventions.joists <- s2$DC + 0.15*s2$M.o + 0.3*if (!is.null(s2$PR)) {s2$PR} else{ 0 } + 0.7* (if(! is.null(s2$CR)) {s2$CR} else {0}) } else if (Joist.Option == "Steel Joist") { n <- round(width / 0.75, 0) joists.volume <- n * steel.Joist.unitWeight * length interventions.joists <- s2$DC + 0.15*s2$M.o + 0.3*if (!is.null(s2$PR)) {s2$PR} else{ 0 } + 0.7* (if(! is.null(s2$CR)) {s2$CR} else {0}) } else if (Joist.Option == "none") { n <- 0 joists.volume <- 0 interventions.joists <- 0 } # Hollow block volume if (Joist.Option %in% c("RC Joist", "Steel Joist")) { Block.Volume <- length * width * 0.15 } else { Block.Volume <- 0 } print(length(interventions.OSslab)) print(nrow(materials.split[[OSslab.Option]])) # Define materials LCA calculations OSslab <- mutate(materials.split$RCO, OSBuilding.Q = OSslab.volume, interventions = interventions.OSslab) Block <- mutate(materials.split$Block, OSBuilding.Q = Block.Volume, interventions = 0) if (!is.null(materials.split[[Joist.Option]])) { joists <- mutate(materials.split[[Joist.Option]], OSBuilding.Q = joists.volume, interventions = interventions.joists) LCA.matrix <- rbind(OSslab, joists, Block) } else { LCA.matrix <- rbind(OSslab, Block) } # Total material calculations LCA.matrix <- mutate(LCA.matrix, TotalMaterials.Q = quantities * OSBuilding.Q / 1000, materials.LC = TotalMaterials.Q * interventions, Energy.LC = materials.LC * energy, CO2.LC = materials.LC * CO2 * 1000, NOx.LC = materials.LC * NOx * 1000, SO2.LC = materials.LC * SO2 * 1000) # Summarize results LCA.results <- list(Energy = sum(LCA.matrix$Energy.LC), CO2 = sum(LCA.matrix$CO2.LC), NOx = sum(LCA.matrix$NOx.LC), SO2 = sum(LCA.matrix$SO2.LC)) return(LCA.results) } # Initialize variables slab.length <- 10 slab.width <- 6 slab.thickness <- 0.1 Block.height <- 0.15 # Design options Joist.Options <- c("RC Joist", "Steel Joist", "none") # Perform LCA for MSBuilding and OSBuilding Option.MSBuilding <- LCA.MSBuilding(b.length, b.width, bd.depth, beam.Options[1], slab.Options[1], LCI.materials, maintenance.MSBuilding) Option.OSBuilding <- LCA.OSBuilding(slab.length, slab.width, Block.height, slab.thickness, Joist.Options[3], LCI.materials, maintenance.OSBuilding) # Combine LCA results integrated.Design <- as.data.frame(list(Energy = Option.MSBuilding$Energy + Option.OSBuilding$Energy, CO2 = Option.MSBuilding$CO2 + Option.OSBuilding$CO2, NOx = Option.MSBuilding$NOx + Option.OSBuilding$NOx, SO2 = Option.MSBuilding$SO2 + Option.OSBuilding$SO2)) # Define unit costs Energy.costs <- 0.04328 CO2.unitcost <- 160 NOx.unitCost <- 1857.5 SO2.unitCosts <- 7843.9 # Calculate total costs integrated.Design <- mutate(integrated.Design, Costs = (Energy * Energy.costs + CO2*CO2.unitcost + NOx * NOx.unitCost + SO2 * SO2.unitCosts)/10^9) ############################ Multi-Objective Optimization######################################## fitness <- function(x) { z <- numeric(7) x <- round(x, 0) y <- expand.grid(S = x[1], M = x[2], R = x[3], M.o = x[4], PR = x[5], CR = x[6]) dur.ev1 <- unlist(y[1:3] / 2) dur.ev2 <- unlist(y[4:6] / 2) dist.1 <- apply(y[1:3], 1, FUN = dist.Events, lifetime = lifetime, start.Date = start.Date) dist.2 <- apply(y[4:6], 1, FUN = dist.Events, lifetime = lifetime, start.Date = start.Date) results <- combine.lifeTimelines(dist.1[[1]], dist.2[[1]], dur.ev1, dur.ev2) z[1] <- sum(results[["duration"]]) z[2] <- -min(abs(results$frequency[1:(length(results$frequency) - 1)] - results$frequency[2:length(results$frequency)])) Distance <- x[7] #initialize the variables we need in MSbuilding b.length <- 8 # units: m b.width <- 4 #units m bd.depth <- 0.12 #units m #vectors, which will contain different design options for beam and for slab. beam.Options <- c("RC", "PRC+RC", "none") slab.Options <- c("RC", "PRC+RC") # Initialize variables in OSBuilding slab.length <- 10 slab.width <- 6 slab.thickness <- 0.1 Block.height <- 0.15 # Design options Joist.Options <- c("RC Joist", "Steel Joist", "none") materials <- LCI.materials product.1.MSBuilding <- LCA.MSBuilding(b.length, b.width, bd.depth, beam.Options[1], slab.Options[1], LCI.materials, dist.1[[1]]) product.2.OSBuilding <- LCA.OSBuilding(slab.length, slab.width, Block.height, slab.thickness, Joist.Options[3], LCI.materials, dist.2[[1]]) integrated.system <- as.data.frame(list(Energy = product.1.MSBuilding$Energy + product.2.OSBuilding$Energy, CO2 = product.1.MSBuilding$CO2 + product.2.OSBuilding$CO2, NOx = product.1.MSBuilding$NOx + product.2.OSBuilding$NOx, SO2 = product.1.MSBuilding$SO2 + product.2.OSBuilding$SO2)) integrated.system <- mutate(integrated.system, Costs = (Energy * Energy.costs + CO2*CO2.unitcost + NOx * NOx.unitCost + SO2 * SO2.unitCosts)/10^9) z[3] <- integrated.system$Energy z[4] <- integrated.system$CO2 z[5] <- integrated.system$NOx z[6] <- integrated.system$SO2 z[7] <- integrated.system$Costs return(z) } # set.seed(200) # You can change 200 to any fixed number # Run NSGA-II optimization r2 <- nsga2(fitness, idim = 7, odim = 7, generations = 10, popsize = 100, lower.bounds = c(15, 2, 25, 6, 30, 90, 16),##7th parameter is the distance between 2 buildings upper.bounds = c(25, 8, 35, 14, 60, 180, 30))##7th parameter is the distance between 2 buildings # Transform results to dataframe r2Results <- as.data.frame(r2$value) outNames <- c("duration", "interv.dist", "energy", "co2", "nox", "so2", "cost") colnames(r2Results) <- outNames # Extract Pareto front pareto3 <- as.data.frame(paretoFront(r2)) colnames(pareto3) <- outNames # Plot Pareto front (duration vs cost) ggplot(r2Results, aes(x = duration, y = cost)) + geom_point(shape = 21) + geom_point(data = pareto3, size = 3, color="red") + geom_line(data = pareto3, color="blue") + labs(title = "Pareto Front: Duration vs Cost", x = "Total Duration of Interventions", y = "Total Cost") # Prepare data for parallel coordinate plot input.params <- round(r2$par, 0) all.results <- cbind(input.params, r2Results, r2$pareto.optimal) colnames(all.results) <- c("S", "M", "R", "M.o", "PR", "CR", "distance", "duration", "interv.dist", "energy", "co2", "nox", "so2", "cost", "pareto") # Create parallel coordinate plot par(mfrow = c(1,1)) parcoord(all.results[, 1:14], var.label = TRUE, col = ifelse(all.results$pareto == TRUE, "indianred", "skyblue2"), lty = ifelse(all.results$pareto == TRUE, 1, 3), lwd = ifelse(all.results$pareto == TRUE, 3, 1)) title("Parallel Coordinate Plot of Design Parameters and Objectives") # Print summary of Pareto-optimal solutions cat("\nSummary of Pareto-optimal solutions:\n") print(summary(pareto3)) # Print best solution for each objective cat("\nBest solutions for each objective:\n") for(obj in outNames) { if(obj == "interv.dist") { best <- pareto3[which.max(pareto3[[obj]]),] } else { best <- pareto3[which.min(pareto3[[obj]]),] } cat(paste0("Best ", obj, ":\n")) print(best) cat("\n") } # Save results write.csv(pareto3, "pareto_optimal_solutions.csv", row.names = FALSE)