setwd("C:\\Users\\user\\Desktop\\LCA_Projects\\LCA_Group") #import libraries library(timelineS) library(lubridate) library(ggplot2) library(dplyr) library(reshape2) library(rPref) library(mco) library(MASS) rm(list = ls()) #clean the environment #Integrated Maintenance Planning #First Step: Define Functions #create plot function plot.timeline <- function(lifetime, events.name, start.Date, plot.Name, event.colors){ dataP <- data.frame(Events = events.name, Event_Dates = ymd(start.Date) + years(lifetime)) timelineS(dataP, main = plot.Name, labels = events.name, label.direction = "up", label.position = 3, label.color = event.colors) } #create dist.event function dist.Events <- function (lifetime, events, start.Date, option.Name, event.colors) { #sort the events events <- sort(events, decreasing = T) #create the distribution of the events distribution.events <- sapply(events, seq, from = 0, to = lifetime) #all events unlisted all.events <- melt(distribution.events) colnames(all.events) <- c("frequency", "event") #sort the events ascending all.events <- all.events[order(all.events$frequency),] #get the unique sequence of events unique.events <- all.events[!duplicated(all.events$frequency),] unique.events$event[which(unique.events$frequency == 0)] <- "DC" # Generate color vector based on event names event.color <- event.colors[match(unique.events$event, names(event.colors))] #plot the timeline plot.timeline(unique.events$frequency, unique.events$event, start.Date, option.Name, event.color) return(unique.events) } # Define color vector for each event event.colors.Buildings <- c(DC = "black", H.B = "blue", M.B = "green", F.B = "red", S.B = "purple", END = "black") event.colors.Water <- c(DC = "black", SI.W = "lightblue", P.W = "lightgreen", W.W = "yellowgreen", T.W = "coral", END = "black") #create function combine the life cycle timelines of individual systems combine.lifeTimelines <- function(product.1, product.2, p1.dur, p2.dur) { #define vectors contain the results base <- list(Names = c(), frequency = c(), duration = c()) #take the lifetime distribution of subsystems and combine them in a list with unique values base$frequency <- sort(unique(c(product.1$frequency, product.2$frequency)), decreasing = FALSE) #assume subsystems have same starting data & lifetime #initilaize and name the beginning & the end of the combined sequence , #for which the duration of the intervention is 0, meaning the constrction time won't be taked into account #as well ass the time need to demolish the subsystems base$Names[1] <- "DC" #beginning of the intervention base$duration[1] <- 0 base$Names[length(base$frequency)] <- "END" base$duration[length(base$frequency)] <- 0 #iterate over the combined list, #and add right names for each phase based on values we have in the unique list of events for(index in 2:(length(base$frequency) - 1)) { phase.1 <- product.1$event[which(product.1$frequency == base$frequency[index])] phase.2 <- product.2$event[which(product.2$frequency == base$frequency[index])] if(length(phase.1) != 0 && length(phase.2) != 0) { base$Names[index] <- paste(phase.1, phase.2) base$duration[index] <- max(p1.dur[which(names(p1.dur) == phase.1)], p2.dur[which(names(p2.dur) == phase.2)]) } else if(length(phase.1) != 0 && length(phase.2) == 0) { base$Names[index] <- phase.1 base$duration[index] <- p1.dur[which(names(p1.dur) == phase.1)] } else if (length(phase.1) == 0 && length(phase.2) != 0) { base$Names[index] <- phase.2 base$duration[index] <- p2.dur[which(names(p2.dur) == phase.2)] } else { base$duration[index] <- 0 } } return(base) } #Second Step: Define the information for life cycle timelines #define the start date, the duration for the hypothetical lifetime for subsystems #and the interventions and frequency(unit: year) par(mfrow = c(2, 1)) start.Date = "2024-01-01" lifetime <- 60 #======================================================== # Second Maintenance Strategy #======================================================== #define information about duration for each intervention #keep same names for simplicity & to automate some of the tasks #define the duration of interventions in days # Buildings events.Op1.Buildings = c(H.B = 2, M.B = 5, S.B = 15, END = lifetime) duration.ev.Buildings <- c(H.B = 3, M.B = 5, S.B = 20) # Water Supply Facility (steel-framed) events.Op1.WaterSupplyFacility <- c(SI.W = 10, P.W = 5, W.W = 7, END = lifetime) duration.ev.WaterSupplyFacility <- c(SI.W = 5, P.W = 3, W.W = 5) #add the name of the design options #use dist.events() to generate the distribution of the interventions over the lifetime design.Options.Buildings <- list(desing.Op1.Buildings <- "Buildings") design.Options.WaterSupplyFacility <- list(desing.Op1.WaterSupplyFacility <- "WaterSupplyFacility") maintenance.Buildings <- dist.Events(lifetime, events.Op1.Buildings, start.Date, design.Options.Buildings, event.colors.Buildings) maintenance.WaterSupplyFacility <- dist.Events(lifetime, events.Op1.WaterSupplyFacility, start.Date, design.Options.WaterSupplyFacility, event.colors.Water) #combine the life cycle timelines of individual systems integrated.interv <- combine.lifeTimelines(maintenance.Buildings, maintenance.WaterSupplyFacility, duration.ev.Buildings, duration.ev.WaterSupplyFacility) #analyze the total duration of the interventions cat("Total Duration (Second Maintenance Strategy):", sum(integrated.interv$duration), "\n") #======================================================== # Third Maintenance Strategy #======================================================== #define information about duration for each intervention #keep same names for simplicity & to automate some of the tasks #define the duration of interventions in days #Buildings events.Op1.Buildings = c(H.B = 2, M.B = 4, S.B = 20, END = lifetime) duration.ev.Buildings <- c(H.B = 3, M.B = 5, S.B = 20) # Water Supply Facility (steel-framed) events.Op1.WaterSupplyFacility <- c(SI.W = 20, P.W = 4, W.W = 6, END = lifetime) duration.ev.WaterSupplyFacility <- c(SI.W = 5, P.W = 3, W.W = 5) #add the name of the design options #use dist.events() to generate the distribution of the interventions over the lifetime design.Options.Buildings <- list(desing.Op1.Buildings <- "Buildings") design.Options.WaterSupplyFacility <- list(desing.Op1.WaterSupplyFacility <- "WaterSupplyFacility") maintenance.Buildings <- dist.Events(lifetime, events.Op1.Buildings, start.Date, design.Options.Buildings, event.colors.Buildings) maintenance.WaterSupplyFacility <- dist.Events(lifetime, events.Op1.WaterSupplyFacility, start.Date, design.Options.WaterSupplyFacility, event.colors.Water) #combine the life cycle timelines of individual systems integrated.interv <- combine.lifeTimelines(maintenance.Buildings, maintenance.WaterSupplyFacility, duration.ev.Buildings, duration.ev.WaterSupplyFacility) #analyze the total duration of the interventions cat("Total Duration (Third Maintenance Strategy):", sum(integrated.interv$duration), "\n") #----------------------------------------- #create function to explore more scenarios #----------------------------------------- design.explore <- function(events1, events2) { results <- c() for(i in 1:dim(events1)[1]) { ev1 <- unlist(events1[i, ]) dist.1 <- dist.Events(lifetime, ev1, start.Date, design.Options.Buildings, event.colors.Buildings) dur.ev1 <- ev1/2 for (j in 1:dim(events2)[1]) { ev2 <- unlist(events2[j, ]) dist.2 <- dist.Events(lifetime, ev2, start.Date, design.Options.WaterSupplyFacility, event.colors.Water) dur.ev2 <- ev2/2 combined.lifetime <- combine.lifeTimelines(dist.1, dist.2, dur.ev1, dur.ev2) min.dist.int <- min(abs(combined.lifetime$frequency[1:(length(combined.lifetime$frequency) - 1)] -combined.lifetime$frequency[2:length(combined.lifetime$frequency)])) results <- rbind(results, c(ev1, ev2, dur = sum(combined.lifetime$duration), dist.inter = min.dist.int)) } } return(as.data.frame(results)) } #----------------------------------------- #create parameter allows us to control how the parameters will vary n.grid <- 5 #generate the intervention matrix scenarios for the buildings events.grid.Buildings <- expand.grid(H.B = sample(seq(2,10, by = 1), n.grid), M.B = sample(seq(5,15,1), n.grid), S.B = sample(seq(15,30,1), n.grid)) #generate the design space for each variable which is a sequence of numbers within the interval [min, max] #use the function sample(x, n) to get a number of n random samples #expand.grid() will take the values of each variable, #and will combine these into a matrix, making sure that the all possible combinations are covered events.grid.WaterSupplyFacility <- expand.grid(SI.W = sample(seq(15,30,1), n.grid), P.W = sample(seq(1,10,1), n.grid), W.W = sample(seq(6,15,1), n.grid)) response.space <- design.explore(events.grid.Buildings, events.grid.WaterSupplyFacility) #visualize and select the maxima based on specific preferences ##preference is to minimize the duration of the interruptions ##and to maximize the distance between interventions #define the preference p <- low(dur)* high(dist.inter) #evaluate the preference we define and to select that alternative which is the best for our preference sky <- psel(response.space, p) #get alternatives ranked pareto2 <- psel(response.space, p, top = nrow(response.space)) #visualization ggplot(response.space, aes(x = dur, y = dist.inter)) + geom_point(shape = 21) + geom_point(data = pareto2, size = 3, aes(color = factor(.level))) #create function to find the Pareto frontier for different preferences show_front <- function(pref) { plot(response.space$dur, response.space$dist.inter) sky <- psel(response.space,pref) plot_front(response.space, pref, col = rgb(0, 0, 1)) points(sky$dur, sky$dist.inter, lwd = 3) } #visualize the Pareto frontier of out preference p show_front(p) #easily simulate different alternatives for preferences p <- high(dur) * low(dist.inter) #Show Pareto front show_front(p) print(paste("end:", Sys.time())) #Section 5 #explore the idea of multi objective optimization using algorithms #based on predefined design space will automatically look for optimal solutions #Life Cycle Inventory and Analysis of Integrated Civil Systems #the same life cycle inventory we create during previous assignment LCI.materials <- read.csv("project_LCImaterials.csv") #update the function to remove the options which we are no longer going to be used #(setting different intervention senarios) #and to consider the impact of the interventions based on their distribution over lifetime LCA.building <- function(length, width, height, story, column_section, beam_section, structure.Option, materials, dist.event) { materials.split <- split(materials, materials$scope) s <- summary(as.factor(dist.event$event)) s2 <- as.data.frame(rbind(Freq = s), stringsAsFactors=F, row.names = 1:length(s)) #Column if (structure.Option == "RC") { n <- round(width / 6, 0)*round(length / 6, 0) #every 6m establish a RC column interventions.column <- s2$DC + if (!is.null(s2$DC)) {s2$DC} else {0} + if (!is.null(s2$S.B)) {s2$S.B} else {0} column.V <- n * column_section * height * story # print("Debug: Checking interventions.column before mutate()") # print(interventions.column) } else if (structure.Option == "Timber") { n <- round(width / 6, 0)*round(length / 6, 0) #every 6m establish a timber column interventions.column <- s2$DC + if (!is.null(s2$DC)) {s2$DC} else {0} + if (!is.null(s2$S.B)) {s2$S.B} else {0} column.V <- n * column_section * height * story # print("Debug: Checking interventions.column before mutate()") # print(interventions.column) } else if (structure.Option == "Steel") { n <- round(width / 10, 0)*round(length / 10, 0) #every 10m establish a steel column interventions.column <- s2$DC + if (!is.null(s2$DC)) {s2$DC} else {0} + if (!is.null(s2$S.B)) {s2$S.B} else {0} column.V <- n * column_section * height * story # print("Debug: Checking interventions.column before mutate()") # print(interventions.column) } else if (structure.Option == "Steel_Frame") { n <- round(width / 10, 0)*round(length / 10, 0) #every 10m establish a steel column interventions.column <- s2$DC + if (!is.null(s2$DC)) {s2$DC} else {0} + if (!is.null(s2$SI.W)) {s2$SI.W} else {0} column.V <- n * column_section * height * story # print("Debug: Checking interventions.column before mutate()") # print(interventions.column) } #Beam if (structure.Option == "RC") { n <- round(width / 6, 0)*round(length / 6, 0) #every 6m establish a RC beam interventions.beam <- s2$DC + if (!is.null(s2$S.B)) {s2$S.B} else {0} beam.V <- n * height * story } else if (structure.Option == "Timber") { n <- round(width / 6, 0)*round(length / 6, 0) #every 6m establish a timber beam interventions.beam <- s2$DC + if (!is.null(s2$S.B)) {s2$S.B} else {0} beam.V <- n * beam_section * height * story } else if (structure.Option == "Steel") { n <- round(width / 10, 0)*round(length / 10, 0) #every 10m establish a steel beam interventions.beam <- s2$DC + if (!is.null(s2$S.B)) {s2$S.B} else {0} beam.V <- n * beam_section * height * story } else if (structure.Option == "Steel_Frame") { n <- round(width / 10, 0)*round(length / 10, 0) #every 10m establish a steel beam interventions.beam <- s2$DC + if(! is.null(s2$SI.W)) {s2$SI.W} else {0} beam.V <- n * beam_section * height * story } #Slab if (structure.Option == "RC") { slab_thickness <- 0.15 interventions.slab <- s2$DC + 0.15 * if (!is.null(s2$H.B)) {s2$H.B} else {0} + 0.15 * if(! is.null(s2$M.B)) {s2$M.B} else {0} slab.V <- length*width*slab_thickness * story } else if (structure.Option == "Timber") { slab_thickness <- 0.03 interventions.slab <- s2$DC + 0.15 * if (!is.null(s2$H.B)) {s2$H.B} else {0} + 0.15 * if(! is.null(s2$M.B)) {s2$M.B} else {0} slab.V <- length*width*slab_thickness * story } else if (structure.Option == "Steel") { slab_thickness <- 0.01 interventions.slab <- s2$DC + 0.15 * if (!is.null(s2$H.B)) {s2$H.B} else {0} + 0.15 * if(! is.null(s2$M.B)) {s2$M.B} else {0} slab.V <- length*width*slab_thickness * story } else if (structure.Option == "Steel_Frame") { slab_thickness <- 0.01 interventions.slab <- s2$DC + if(! is.null(s2$SI.W)) {s2$SI.W} else {0} + 0.15 * if(! is.null(s2$P.W)) {s2$P.W} else {0} slab.V <- length*width*slab_thickness * story } #Facade if (structure.Option == "RC") { wall_thickness <- 0.15 interventions.wall <- s2$DC + 0.15 * if (!is.null(s2$H.B)) {s2$H.B} else {0} + 0.15 * if(! is.null(s2$M.B)) {s2$M.B} else {0} wall.V <- length*width*wall_thickness * story } else if (structure.Option == "Timber") { wall_thickness <- 0.03 interventions.wall <- s2$DC + 0.15 * if (!is.null(s2$H.B)) {s2$H.B} else {0} + 0.15 * if(! is.null(s2$M.B)) {s2$M.B} else {0} wall.V <- length*width*wall_thickness * story } else if (structure.Option == "Steel") { wall_thickness <- 0.01 interventions.wall <- s2$DC + 0.15 * if (!is.null(s2$H.B)) {s2$H.B} else {0} + 0.15 * if(! is.null(s2$M.B)) {s2$M.B} else {0} wall.V <- length*width*wall_thickness * story } else if (structure.Option == "Steel_Frame") { wall_thickness <- 0.01 interventions.wall <- s2$DC + if(! is.null(s2$SI.W)) {s2$SI.W} else {0} + 0.15 * if(! is.null(s2$P.W)) {s2$P.W} else {0} wall.V <- length*width*wall_thickness * story } #why there is a null?? is it because there could be no girder?? if (!is.null(materials.split[[structure.Option]])) { column <- mutate(materials.split[[structure.Option]], building.Q = column.V, interventions = interventions.column) beam <- mutate(materials.split[[structure.Option]], building.Q = beam.V, interventions = interventions.beam) slab <- mutate(materials.split[[structure.Option]], building.Q = slab.V, interventions = interventions.slab) Wall <- mutate(materials.split[[structure.Option]], building.Q = wall.V, interventions = interventions.wall) LCA.matrix <- rbind(column, beam, slab, Wall) } else { LCA.matrix <- rbind(column, beam, slab, Wall) } LCA.matrix <- mutate(LCA.matrix, TotalMaterials.Q = quantities * building.Q / 1000, materials.LC = TotalMaterials.Q * interventions, Energy.LC = materials.LC * energy, CO2.LC = materials.LC * CO2 * 1000, NOx.LC = materials.LC * NOx * 1000, SO2.LC = materials.LC * SO2 * 1000) LCA.results <- list(Energy = sum(LCA.matrix$Energy.LC), CO2 = sum(LCA.matrix$CO2.LC), NOx = sum(LCA.matrix$NOx.LC), SO2 = sum(LCA.matrix$SO2.LC)) return(LCA.results) } #extract the frequency of different events repetition in s2 variable #using these values to calculate the impact of the interventions over the lifecycle # Define parameters for LCA ob.length <- 24 # units: m ob.width <- 30 #units: m ob.height <- 4 #units: m ob.story <- 30 sd.length <- 24 # units: m sd.width <- 30 #units: m sd.height <- 4 #units: m sd.story <- 15 rb.length <- 30 # units: m rb.width <- 60 #units: m rb.height <- 4 #units: m rb.story <- 3 wf.length <- 40 # units: m wf.width <- 50 #units: m wf.height <- 6 #units: m wf.story <- 1 structures.Options <- c("RC", "Timber", "Steel", "Steel_Frame") #call function to calculate the environmental impact # Perform LCA for buildings Option.OfficeBuilding <- LCA.building(ob.length, ob.width, ob.height, ob.story, 0.25, 0.12, structures.Options[1], LCI.materials, maintenance.Buildings) Option.StudentDormitory <- LCA.building(sd.length, sd.width, sd.height, sd.story, 0.25, 0.12, structures.Options[2], LCI.materials, maintenance.Buildings) Option.ResidentialBuilding <- LCA.building(rb.length, rb.width, rb.height, rb.story, 0.06, 0.03, structures.Options[3], LCI.materials, maintenance.Buildings) Option.WaterSupplyFacility <- LCA.building(wf.length, wf.width, wf.height, wf.story, 0.04, 0.03, structures.Options[4], LCI.materials, maintenance.WaterSupplyFacility) #combine the effect of both into one dataframe # Combine LCA results integrated.Design <- as.data.frame(list(Energy = Option.OfficeBuilding$Energy + Option.StudentDormitory$Energy + Option.ResidentialBuilding$Energy + Option.WaterSupplyFacility$Energy, CO2 = Option.OfficeBuilding$CO2 + Option.StudentDormitory$CO2 + Option.ResidentialBuilding$CO2 + Option.WaterSupplyFacility$CO2, NOx = Option.OfficeBuilding$NOx + Option.StudentDormitory$NOx + Option.ResidentialBuilding$NOx + Option.WaterSupplyFacility$NOx, SO2 = Option.OfficeBuilding$SO2 + Option.StudentDormitory$SO2 + Option.ResidentialBuilding$SO2 + Option.WaterSupplyFacility$SO2)) # Define unit costs #CO2: carbon tax, others:costs for air purification Energy.costs <- 1.08 CO2.unitcost <- 37 NOx.unitCost <- 9696 SO2.unitCosts <- 19773 # Calculate total costs integrated.Design <- mutate(integrated.Design, Costs = (Energy * Energy.costs + CO2*CO2.unitcost + NOx * NOx.unitCost + SO2 * SO2.unitCosts)/10^9) #Multi-Objective Optimization #to implement a genetic algorithm for the multi criteria optimization #define the function to be minimized, the number of input variables, the numbers of output measures #as well as the lower and upper bounds for the input variables #input variables: intervention duration in a specific range # ,building length, width, height, story # , as well thickness of the asphalt #output variables: total duration of the interventions # ,the minimum distance between two consecutive interventions # ,energy, CO2, NOx, SO2, and Costs #Based on aforementioned variables #Define the function to be minimized fitness <- function(x) { #define the output dimension z <- numeric(7) #distribute the interventions over the lifetime x <- round(x, 0) y <- expand.grid(H.B = x[1], M.B = x[2], S.B = x[3], SI.W = x[4], P.W = x[5], W.W = x[6]) dur.ev1 <- unlist(y[1:3] / 2) dur.ev2 <- unlist(y[4:6] / 2) dist.1 <- apply(y[1:3], 1, FUN = dist.Events, lifetime = lifetime, start.Date = start.Date, event.colors = event.colors.Buildings) dist.2 <- apply(y[4:6], 1, FUN = dist.Events, lifetime = lifetime, start.Date = start.Date, event.colors = event.colors.Water) results <- combine.lifeTimelines(dist.1[[1]], dist.2[[1]], dur.ev1, dur.ev2) #expected output is represented by the total number of interruption and the minimum distance between interventions z[1] <- sum(results[["duration"]]) z[2] <- -min(abs(results$frequency[1:(length(results$frequency) - 1)] - results$frequency[2:length(results$frequency)])) #Cuz the function we are going to use for optimization aim to minimize a specific function #, we need to handle those objectives which we want to maximize. #To do this, we will negate the results, so the maximum value will become the minimum one #z[2] contains the results for the distance between two successive interventions and the defined objective for this is maximize() #Because of this, we negated the results. #define those variables which are static #The increase in job opportunities not only leads to a rise in office building floor area and local housing demand but also creates an incentive for incoming students to relocate to the area for education. #Based on this interaction pattern, we assume that for every 100% increase in office building capacity, the floor area of student dormitories and residential buildings will increase by 20% and 50%, respectively. ob.length <-x[7] # units: m ob.width <- 30 #units: m ob.height <- 4 #units: m ob.story <- 30 sd.length <-24*(ob.length/24*0.2) # units: m sd.width <- 30 #units: m sd.height <- 4 #units: m sd.story <- 15 rb.length <-30*(ob.length/24*0.5) # units: m rb.width <- 60 #units: m rb.height <- 4 #units: m rb.story <- 3 wf.length <-40 # units: m wf.width <- 50 #units: m wf.height <- 6 #units: m wf.story <- 1 materials <- LCI.materials structures.Options <- c("RC", "Timber", "Steel", "Steel_Frame") Energy.costs <- 1.08 CO2.unitcost <- 37 NOx.unitCost <- 9696 SO2.unitCosts <- 19773 #call the function we defined for life cycle analysis product.1.OfficeBuilding <- LCA.building(ob.length, ob.width, ob.height, ob.story, 0.25, 0.12, structures.Options[1], LCI.materials, dist.1[[1]]) product.2.StudentDormitory <- LCA.building(sd.length, sd.width, sd.height, sd.story, 0.25, 0.12, structures.Options[2], LCI.materials, dist.1[[1]]) product.3.ResidentialBuilding <- LCA.building(rb.length, rb.width, rb.height, rb.story, 0.06, 0.03, structures.Options[3], LCI.materials, dist.1[[1]]) product.4.WaterSupplyFacility <- LCA.building(wf.length, wf.width, wf.height, wf.story, 0.04, 0.03, structures.Options[4], LCI.materials, dist.2[[1]]) integrated.system <- as.data.frame(list(Energy = product.1.OfficeBuilding$Energy + product.2.StudentDormitory$Energy + product.3.ResidentialBuilding$Energy + product.4.WaterSupplyFacility$Energy, CO2 = product.1.OfficeBuilding$CO2 + product.2.StudentDormitory$CO2 + product.3.ResidentialBuilding$CO2 + product.4.WaterSupplyFacility$CO2, NOx = product.1.OfficeBuilding$NOx + product.2.StudentDormitory$NOx + product.3.ResidentialBuilding$NOx + product.4.WaterSupplyFacility$NOx, SO2 = product.1.OfficeBuilding$SO2 + product.2.StudentDormitory$SO2 + product.3.ResidentialBuilding$SO2 + product.4.WaterSupplyFacility$SO2)) integrated.system <- mutate(integrated.system, Costs = (Energy * Energy.costs + CO2*CO2.unitcost + NOx * NOx.unitCost + SO2 * SO2.unitCosts)/10^9) # take the results obtained and we will feed these to the output variable z[3] <- integrated.system$Energy z[4] <- integrated.system$CO2 z[5] <- integrated.system$NOx z[6] <- integrated.system$SO2 z[7] <- integrated.system$Costs return(z) } # # Run NSGA-II optimization r2 <- nsga2(fitness, idim = 7, odim = 7, generations = 10, popsize = 100, lower.bounds = c(2, 5, 15, 15, 1, 5, 24), upper.bounds = c(10, 15, 30, 30, 10, 15, 60)) #create plots from data #transform results to dataframe r2Results <- as.data.frame(r2$value) outNames <- c("duration", "interv.dist", "energy", "co2", "nox", "so2", "cost") colnames(r2Results) <- outNames #Extract values of Pareto front and transform these into a dataframe pareto3 <- as.data.frame(paretoFront(r2)) colnames(pareto3) <- outNames # Plot Pareto front (duration vs cost) ggplot(r2Results, aes(x = duration, y = cost)) + geom_point(shape = 21) + geom_point(data = pareto3, size = 3, color="red") + geom_line(data = pareto3, color="blue") + labs(title = "Pareto Front: Duration vs Cost", x = "Total Duration of Interventions", y = "Total Cost") # Prepare data for parallel coordinate plot input.params <- round(r2$par, 0) all.results <- cbind(input.params, r2Results, r2$pareto.optimal) colnames(all.results) <- c("H.B", "M.B", "S.B", "SI.W", "P.W", "W.W", "ob.length", "duration", "interv.dist", "energy", "co2", "nox", "so2", "cost", "pareto") # Create parallel coordinate plot par(mfrow = c(1,1)) parcoord(all.results[, 1:15], var.label = TRUE, col = ifelse(all.results$pareto == TRUE, "indianred", "skyblue2"), lty = ifelse(all.results$pareto == TRUE, 1, 3), lwd = ifelse(all.results$pareto == TRUE, 3, 1)) title("Parallel Coordinate Plot of Design Parameters and Objectives") # Print summary of Pareto-optimal solutions cat("\nSummary of Pareto-optimal solutions:\n") print(summary(pareto3)) # Print best solution for each objective cat("\nBest solutions for each objective:\n") for(obj in outNames) { if(obj == "interv.dist") { best <- pareto3[which.max(pareto3[[obj]]),] } else { best <- pareto3[which.min(pareto3[[obj]]),] } cat(paste0("Best ", obj, ":\n")) print(best) cat("\n") }